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The generalized di!erential quadrature rule (GDQR) proposed recently by the authors is
applied for the "rst time to second and fourth order initial-value di!erential equations with
Du$ng-type non-linearity. Procedures are given in detail to convert these non-linear
di!erential equations into a set of linear algebraic equations in an iterative loop using the
Frechet derivative. The e!ectiveness of the GDQR for obtaining the periodic solution of the
Du$ng equation has been demonstrated through a number of examples. It is also shown
that the use of the Frechet derivative makes it easier for the GDQR to handle non-linearity.
The wide applicability of the GDQR is manifested further through this work.

( 2000 Academic Press
1. INTRODUCTION

Today, system-governing equations of mechanics and other scienti"c disciplines are often
solved using numerical methods. Topics concerned with computational methods have
emerged as key areas of research and education throughout the world. In structural
dynamics, the numerical solution of the governing equations in time domain is often
obtained through the "nite-di!erence (FD) techniques. The essence of the FD method is to
replace the derivatives at a discrete point with di!erence quotients using only a few adjacent
points. The FD method often employs low order polynomial test functions and obtains
results of medium accuracy.

As a general method to solve boundary/initial-value di!erential equations, a generalized
di!erential quadrature rule (GDQR) was proposed recently by the authors [1}4]. The
GDQR employs high order test functions at all the discrete grid points to obtain a solution
of high accuracy. The GDQR is a generalization of di!erential quadrature method (DQM)
[1] and has been applied to initial-value linear di!erential equations of second through
fourth orders [2]. The newly proposed DQ [3] is precisely the GDQR though the term
GDQR is not used. The GDQR has also been applied to two-point boundary-value
di!erential equations of fourth, sixth and eighth orders in structural mechanics [4}10].
Static and free vibrational analyses of two-dimensional rectangular plates have been
completed using the GDQR [10]. Third order non-linear Blasius di!erential equations and
sixth order Onsager equations in #uid mechanics have been successfully solved using the
GDQR, although their domains are unbounded [11]. Coupled di!erential equations have
also been e!ectively dealt with [4, 11].

The focus in this paper is on a novel application of the GDQR to the non-linear initial
value di!erential equations, such as Du$ng's equations encountered in structural
0022-460X/00/450805#13 $35.00/0 ( 2000 Academic Press



806 G. R. LIU AND T. Y. WU
dynamics. A method using trigonometric series has been proposed and applied to second
and fourth order Du$ng's equations by Groves [12]. However, two computational
di$culties were encountered*the lengthy and complex algebraic manipulations and the
di$culty of accurately solving the resultant non-linear algebraic equations. The GDQR is
applied here to overcome these di$culties through simple programmable procedures. The
non-linearity is dealt with using the Frechet derivative [11, 13] to convert the non-linear
di!erential equation into linear di!erential equation in an iteration process. A comparative
study is conducted using the present GDQR and the method of trigonometric series. Very
good results have been obtained. It is also shown that the use of the Frechet derivative
makes easier the manipulation of the non-linear di!erential equations in the GDQR.

This work applies for the "rst time the GDQR to second and fourth order initial-value
di!erential equations with Du$ng-type non-linearity. Procedures are given in detail to
convert these non-linear di!erential equations into a set of linear algebraic equations in an
iterative loop using the Frechet derivative. The wide applicability of the GDQR is
manifested further through some examples in this work.

2. DUFFING'S EQUATIONS

Du$ng's equation is a group of classical non-linear initial-value di!erential equations

y(2)#y#Ry3"F sinut, (1)

where y(r)"dry (t)/dtr, y is an unknown function, t is the axis, u is a given parameter
(frequency), and F and R are given constants.

The trigonometric series method has been applied to approximate its periodic solutions
[12]

y"a
1
sinut#a

3
sin 3ut#a

5
sin 5ut#2 . (2)

Substitution of the series, after truncation, into equation (1) yields a set of non-linear
algebraic equations for the coe$cients a

n
after equating coe$cients of the same terms.

Periodic solution of the forced Du$ng equation for the case of F"2, u"1, and
R"!1/6 was obtained as [12]

y"!2)5425 sin t!0)07139sin 3t!0)00219sin 5t. (3)

Its initial conditions at t"0 should thus be

y"0, y(1)"!2)7676. (4)

Physically, the homogeneous Du$ng equation (F"0) represents the free vibration of
a pendulum. The frequency of the oscillations depends on the initial conditions of the
pendulum. Periodic solution for the case of u"0)7 and R"!1/6 was found as [12]

y"2)058sin 0)7t#0)0816sin 2)1t#0)00337sin 3)5t. (5)

One should have the initial conditions at t"0 as

y"0, y(1)"1)62376. (6)
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GENERALIZED DIFFERENTIAL QUADRATURE RULE 807
The series solution method of equation (2) is also applicable to higher order equations,
when it is applied to the following Du$ng equation:

y(4)#5y(2)#4y!1
6
y3"0. (7)

The solution was obtained for u"0)9 as follows:

y"2)1906sin 0)9t!0)02247sin 2)7t#0)000045sin 4)5t. (8)

The appropriate initial conditions are

y"0, y(1)"1)91103, y(2)"0, y(3)"!1)15874. (9)

3. THE GDQR

The GDQR is brie#y reviewed here for completeness of the present work. When the "eld
function t (x), governed by a di!erential equation, is constrained by one or more than one
condition at any individual point, we "rst divide the solution domain with the points x

i
(i"1, 2,2,N ) that include all the points with the given conditions. Note that only
governing equation is to be satis"ed for some points. If n

i
conditions (equations ) are to be

satis"ed at point x
i
, the GDQR is expressed as follows [1}4]:

drt(x
i
)

dxr
"

N
+
j/1

n
j
!1

+
l/0

E (r)
ijl

t (l)
j
"

M
+

m/1

E (r)
im

P
m

(i"1, 2,2 ,N), (10)

where E(r)
im

(which is a convenient expression of E(r)
ijl

) is the weighting coe$cient
corresponding to the rth order derivative at point x

i
, and M"+N

i/1
n
i
is the number of the

total independent variable P
m
, which is expressed in series as

MPNT"MP
1
, P

2
,2 ,P

m2
,P

M
N"Mt(0)

1
, t(1)

1
,2 ,t(n

1
!1)

1
,2 ,t(0)

N
, t(1)

N
,2,t(n

N
!1)

N
N,

where t
i
"t(0)

i
"t (x

i
) is the function value, and t(l )

i
"t(l ) (x

i
) (l"1, 2,2,n

i
!1) are its

derivatives.
It is clearly shown from equation (10) that the GDQR forces the same number of

independent variables t(l) (x
i
) (l"0, 1, 2,2 ,n

i
!1) as that of the equations at a point, and

that its independent variables are chosen as function value and its derivatives of possible
lowest order wherever necessary. The DQM chooses only function values as independent
variables. The reason why the term*generalized*is employed in the GDQR is that the
GDQR is fully generalized for the di!erential equations of any "nite order. The
conventional DQM is usually con"ned within second order boundary-value di!erential
equations or "rst order initial-value di!erential equations [14]. In a most recent review
work, Bellomo [14] mentioned the generalization of the DQM but gave no suggestions.

4. APPLICATION OF THE GDQR

For a kth order initial-value di!erential equation, there are k initial conditions at the
initial point, and all the other discrete points just need to satisfy the governing equation.
Therefore, the GDQR expression can be inferred from equation (10) as follows:

y(r) (t
i
)"

N`k~1
+
j/1

E(r)
ij

G
j

(i"1, 2,2 ,N ), (11)
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where MG
1
, G

2
,2 ,G

N
,G

N`1
,2,G

N`k~1
N"My

1
, y

2
,2 ,y

N
, y(1)

N
,2 ,y (k!1)

N
N. For the

second and fourth order di!erential equations which will be solved in this work, we have
k"2 and 4 respectively.

Special attention should be paid to the numbering of sampling points. When the solution
domain is chosen as [0,¹] and the number of sampling points is N, the initial point is
denoted as t

N
and the initial conditions are expressed as y

N
, y(1).

N
,2 ,y(k~1)

N
, since we use an

inverse node numbering convention in initial-value problems [2]. The numbering for the
discrete points can be arbitrary on the principle of the interpolation theory. The inverse
numbering is used just for the convenience of notation and programming. Equation (11) for
the cases of k"2 and 4 has been derived and applied to linear di!erential equations [2].
The corresponding weighting coe$cients have been obtained there by these authors and
will be used directly in this work later.

Non-linear di!erential equations (1) and (7) can be converted into linear di!erential
equations using the Frechet derivative and then into a set of linear algebraic equations
using equation (11). Consider equation (1) as an example. Newton's approach is "rst
adopted wherein one begins with assumed function values consistent with the initial
condition*equation (4). Then successively re"ned solutions are obtained through the
following iteration scheme:

y*m`1+"y*m+#h*m+, (12)

where y*m+ and h*m+ are the function value and its re"nement and m is the iteration count.
The function value re"nement can be obtained through solving the following equation

written in an operator form as [11, 13]

¸(1)(h)#¸ (y)"0, (13)

where the operator ¸ (y) is obtained according to equation (1), i.e.,

¸ (y)"
d2y

dt2
#y#Ry3!F sinut (14)

and ¸(1) (h) is the Frechet derivative de"ned as

¸(1) (h)"
L
Le

¸ (y#eh) De"0 . (15)

In order to evaluate the Frechet derivative, y is replaced by y#eh in equation (14) to
obtain

¸ (y#eh)"
d2 (y#eh)

dt2
#(y#eh)#R (y#eh)3!Fsin ut.

The above equation is di!erentiated partially with respect to e, and then e is set equal to
zero in the resultant derivative. Substituting the Frechet derivative so determined into
equation (13), one obtains the following equation:

d2h
dt2

#(1#3Ry2)h"!

d2y

dt2
!y!3Ry3#F sin ut. (16)
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GENERALIZED DIFFERENTIAL QUADRATURE RULE 809
Since h is correction function, the initial condition equations (4), (6) and (9) can be
combined and obtained as follows, where k"2 for equations (4) and (6) and k"4 for
equation (9), respectively,

h (t
N
)"h(1) (t

N
)"2"h(k~1)(t

N
)"0. (17)

The cosine-type grid points are often used in the di!erential quadrature since it usually
produces accurate results. The grid points are then expressed as

t
i
"

1

2 C1!cos
N!i

N!1
nD¹, (18)

where it is clearly shown that the initial point is t
N
. Equation (16) is a linear second order

di!erential equation for the function re"nement h, along with two initial conditions at point
t
N

given by equation (17). For the other points, only the di!erential equation (16) is to be
satis"ed. Based on the GDQR de"nition about independent variables, we have k (n

N
"k)

independent variables h
N
, h(1)

N
,2,h(k~1)

N
at t

N
, and one (n

i
"1) independent variable h

i
at

all the other points t
i

(i"1, 2, 3,2,N!1). Therefore, the corresponding GDQR
expression for the function h can be written as

h(r) (t
i
)"

N`k~1
+
j/1

E(r)
ij
;

j
(i"1, 2,2 ,N ), (19)

which is similar to equation (11) where M;
1
, ;

2
,2 ,;

N
,;

N`1
,2 ,;

N`k~1
N"

Mh
1
, h

2
,2,h

N
, h(1)

N
,2,h(k~1)

N
N, and k"2 for second order di!erential equation and k"4

for fourth order di!erential equation. Since equation (17) must be satis"ed, the superscript
N#k!1 in equation (19) can be changed as N!1.

Then successively re"ned independent variables are obtained through the following
iteration scheme:

MGN*m`1+"MGN*m+#M;N*m+, (20)

where MGN*m+ and M;N*m+ are their respective values and m is the iteration count.
The di!erential equation (16) is then expressed using equations (11) and (19) as follows,

where the count number m is omitted:

N~1
+
j/1

E(2)
ij

h
j
#(1#3Ry2

i
)h

i
"b

i
(i"1, 2, 3,2 ,N!1), (21)

where the coe$cient

b
i
"!

N`1
+
j/1

E(2)
ij

G
j
!y

i
!3Ry3

i
#Fsinut

i
. (22)

The iteration procedures are as follows. First, the initial values of independent variables
MGNT"My

1
, y

2
,2,y

N
,y(1)

N
,2,y(k~1)

N
N are assumed according to the initial conditions.

Second, coe$cient b
i
in equation (21) is calculated using equation (22). The N!1 variables

Mh
1
, h

2
,2,h

N~1
N can be calculated from the N!1 linear algebraic equations in equation
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Figure 1. Diagram for the iterative solution procedure of second order Du$ng equation.

810 G. R. LIU AND T. Y. WU
(21). The re"nement of MGN is obtained from equation (20). Third, apply the re"ned MGN to
the next round of iteration starting with the above-mentioned second step and thus obtain
a new M;N. The following convergence criterion of equation (23a) or (23b) was used for
controlling the iteration scheme:

A
N`k~1

+
j/1

(;
j
)2B

*m`1+

NA
N`k~1

+
j/1

(;
j
)2B

*m+
)10~6, (23a)

D;
j
D)10~6 ( j"1, 2,2 , N!1). (23b)

If the convergence criterion is satis"ed, we obtain the required independent variables MGN.
If not, continue the iteration starting with the second step. In order to elaborate the iterative
procedure, a block diagram in Figure 1 shows all the major steps in a logical sequence. The
solution procedures of unforced second order Du$ng equations are the same if one imposes
F"0 in equation (1).

For the fourth order initial value di!erential equation (7) together with the initial
condition equation (9), similar solution procedures are applied. If we still employ the
re"nement function h, the GDQR expression for function h can be written as equation (19)
for k"4.

The solution procedures for fourth order equations are similar to those for second order
equations. Therefore, only the GDQR expansion for the re"nement function is written
JSV=20003050=VVC=Ravi
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accordingly as

N~1
+
j/1

E(4)
ij

h
j
#5

N~1
+
j/1

E(2)
ij

h
j
#A4!

y2
i
2 B h

i
"b

i
(i"1, 2, 3,2,N!1), (24)

where the coe$cient

b
i
"!

N`3
+
j/1

E(4)
ij

G
j
!5

N`3
+
j/1

E(2)
ij

G
j
!4y

i
#

y3
i
6

. (25)

5. DISCUSSIONS AND CONCLUSIONS

The generalized di!erential quadrature rule is used here to deal with the second and
fourth order initial value di!erential equations with Du$ng-type non-linearity. Based on
the de"nition of the GDQR, the second order equation has two independent variables at the
initial point and one independent variable at any other discrete point. The non-linear
Blasius equation encountered in #uid mechanics [11] has also been solved using the
GDQR. Third order boundary value Blasius equation has two boundary conditions at one
point and one boundary condition at the other point. Both second order initial-value
di!erential equation and third order boundary-value Blasius equation have two
independent variables at one point and one independent variable at all the other discrete
points. Therefore, their respective GDQR expressions are one and the same. In a word, the
GDQR expressions neither distinguish between the initial-value equation and the
boundary-value one nor make a distinction between the di!erent orders.

For both the second and fourth order Du$ng equations, the GDQR expression and their
corresponding weighting coe$cients are directly adopted from reference [2]. Non-linear
Du$ng equations are converted into linear di!erential equations using the Frechet
derivative and then into a set of linear algebraic equations using the GDQR. The use of
Frechet derivative makes it easier to overcome the non-linearity through simple
programmable procedures. There is no restriction on the choice of the independent
variables at the "rst iteration step, which are usually taken as zero. However, a non-linear
algebraic equation has to be solved using pattern search or Newton's method in employing
the trigonometric series method [12]. Newton's method sometimes yields only the trivial
solution of a

1
"a

3
"a

5
"a

7
"0, even when it starts very close to the desired solutions.

Another disadvantage of trigonometric series method is that the frequency must be assumed
beforehand and the initial condition is obtained later. This is contrary to the normal case
where the initial value is known at "rst.

The cosine type of sampling-point distribution is used in all cases of this work. The
number of sampling points is employed as follows: N"9, 17, 15 for Tables 1, 2, 3,
respectively, N"15, 25 for Figures 2 and 3, respectively, and N"35 for Figure 4. The
calculated results are interpolated using the Lagrange interpolation. In initial-value
problems, a decision has to be made to properly choose the domain length ¹. The accuracy
decreases with the increase in domain length. For the forced Du$ng equation, one will not
obtain convergent results if the domain length is increased beyond more than one period.
Therefore, only half-period solution is obtained and shown in Figure 2. For second and
fourth order unforced equations, one can obtain the convergent solutions for an interval of
more than one period. Figures 3 and 4 display one-period solutions. Tables 1}3 list
convergent solutions for even longer domain length. Very good results are observed. Some
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TABLE 1

Comparison of results for the forced Du.ng equation of second order

Displacement Velocity Acceleration

Error Error Error
t GDQR Equation (3) (%) GDQR Equation (3) (%) GDQR Equation (3) (%)

4 1)9682 1)9605 !0)392 1)4781 1)4767 !0)098 !2)2111 !2)2189 0)353
3)8 1)6285 1)6210 !0)466 1)9160 1)9159 !0)002 !2)1324 !2)1381 0)268
3)6 1)2044 1)1968 !0)636 2)3139 2.3144 0)022 !1)7980 !1)7965 !0)084
3)4 0)7094 0)7018 !1)089 2)6148 2)6141 !0)028 !1)1618 !1)1520 !0)845
3)2 0)1688 0)1615 !4)500 2)7622 2)7595 !0)097 !0)2844 !0)2762 !2)967
3 !0)3830 !0)3896 1)692 2)7242 2)7205 !0)137 0)6566 0)6592 0)395
2)8 !0)9090 !0)9149 0)639 2)5094 2)5053 !0)162 1)4535 1)4550 0)106
2)6 !1)3779 !1)3829 0)362 2)1617 2)1571 !0)210 1)9724 1)9752 0)144
2)4 !1)7688 !1)7728 0)226 1)7402 1)7353 !0)284 2)1975 2)1979 0)020
2)2 !2)0726 !2)0757 0)146 1)2972 1)2927 !0)347 2)2059 2)2010 !0)221
2 !2)2885 !2)2907 0)100 0)8648 0)8616 !0)372 2)1096 2)1026 !0)333
1)8 !2)4199 !2)4217 0)074 0)4538 0)4517 !0)456 2)0059 2)0021 !0)191
1)6 !2)4711 !2)4725 0)057 0)0588 0)0571 !3)008 1)9556 1)9555 !0)001
1)4 !2)4437 !2)4447 0)042 !0)3337 !0)3354 0)520 1)9820 1)9815 !0)027
1)2 !2)3368 !2)3375 0)031 !0)7384 !0)7397 0)177 2)0739 2)0701 !0)182
1 !2)1468 !2)1474 0)027 !1)1643 !1)1648 0)040 2)1814 2)1776 !0)173
0)8 !1)8699 !1)8704 0)028 !1)6061 !1)6063 0)010 2)2153 2)2164 0)052
0)6 !1)5050 !1)5054 0)028 !2)0381 !2)0389 0)039 2)0650 2)0690 0)194
0)4 !1)0584 !1)0586 0)022 !2)4137 !2)4148 0)048 1)6402 1)6387 !0)090
0)2 !0)5472 !0)5473 0)010 !2)6741 !2)6745 0)016 0)9173 0)9140 !0)364
0 0 0 0 !2)7676 !2)7676 0)001 0)0121 0 0
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TABLE 2

Comparison of results for the homogeneous Du.ng equation of second order

Displacement Velocity Acceleration

Error Error Error
t GDQR Equation (5) (%) GDQR Equation (5) (%) GDQR Equation (5) (%)

12 1)7679 1)7612 !0)383 !0)5740 !0)5818 1)349 !0)8570 !0)8481 0)138
11)4 1)9709 1)9686 !0)120 !0)1181 !0)1248 5)349 !0)6952 !0)6993 0)595
10)8 1)9171 1)9182 0)057 0)3021 0)2969 !1)744 !0)7428 !0)7406 !0)299
10)2 1)5915 1)5964 0)305 0)8015 0)7943 !0)907 !0)9198 !0)9191 !0)075
9)6 0)9435 0)9523 0)923 1)3482 1)3427 !0)411 !0)8030 !0)8081 0)629
9 0)0281 0)0390 27)998 1)6242 1)6233 !0)054 !0)0281 !0)0386 27)198
8)4 !0)8965 !0)8868 !1)094 1)3759 1)3806 0)337 0)7749 0)7695 !0)698
7)8 !1)5634 !1)5572 !0)401 0)8332 0)8387 0)655 0)9288 0)9294 0)062
7)2 !1)9065 !1)9031 !0)178 0)3277 0)3327 1)520 0)7506 0)7524 0)236
6)6 !1)9744 !1)9738 !0)032 !0)0941 !0)0913 !3)107 0)6908 0)6950 0)593
6 !1)7875 !1)7881 0)034 !0)5440 !0)5415 !0)467 0)8356 0)8323 !0)398
5)4 !1)3004 !1)3030 0)201 !1)0915 !1)0872 !0)389 0)9374 0)9376 0)020
4)8 !0)4937 !0)4986 0)993 !1)5495 !1)5477 !0)119 0)4681 0)4744 1)321
4)2 0)4659 0)4613 !1)002 !1)5571 !1)5587 0)102 !0)4457 !0)4414 !0)972
3)6 1)2801 1)2766 !0)273 !1)1074 !1)1097 0)209 !0)9310 !0)9330 0)221
3 1)7773 1)7749 !0)137 !0)5602 !0)5616 0)235 !0)8416 !0)8402 !0)165
2)4 1)9725 1)9714 !0)058 !0)1055 !0)1080 2)272 !0)6945 !0)6970 0)362
1)8 1)9116 1)9108 !0)043 0)3138 0)3147 0)310 !0)7459 !0)7464 0)055
1)2 1)5775 1)5771 !0)027 0)8185 0)8165 !0)253 !0)9212 !0)9245 0)353
0)6 0)9201 0)9198 !0)040 1)3617 1)3618 0)008 !0)8012 !0)7894 !1)493
0 0 0 0 1)6238 1)6238 0)000 0)1185 0 0
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TABLE 3

Comparison of results for the homogeneous Du.ng equation of fourth order

y y(1) y(2) y(3) y(4)

Error Error Error Error Error
t GDQR (%) GDQR (%) GDQR (%) GDQR (%) GDQR (%)

14 0)0706 1)057 1)9102 !0)015 !0)0433 0)345 !1)1590 !0)089 !0)070 4)021
13)3 !1)2093 !0)071 1)6442 0)004 0)8368 !0)088 !1)4140 !0)002 0)356 0)466
12)6 !2)0741 !0)030 0)7180 0)084 1)7539 !0)047 !0)9222 !0)007 !1)962 !0)127
11)9 !2)1166 !0)002 !0)6014 !0)160 1)8099 0)008 0)7871 !0)350 !2)163 !0)016
11)2 !1)3136 0)037 !1)5864 !0)026 0)9299 0)096 1)4333 0)081 0)228 !1)333
10)5 !0)0529 1)146 !1)9106 !0)001 0)0325 1)374 1)1585 !0)004 0)052 !1)434
9)8 1)2243 !0)044 !1)6363 0)010 !0)8500 0)007 1)4173 0)050 !0)340 !1)038
9)1 2)0805 !0)021 !0)7015 0)028 !1)7625 !0)022 0)9037 !0)104 1)993 !0)132
8)4 2)1111 !0)009 0)6183 !0)079 !1)8025 !0)013 !0)8072 !0)098 2)136 0)013
7)7 1)2990 0)013 1)5951 !0)032 !0)9165 0)016 !1)4311 !0)035 !0)249 0)147
7 0)0352 1)276 1)9108 !0)014 !0)0216 2)509 !1)1581 !0)041 !0)035 !1)854
6)3 !1)2395 !0)039 1)6283 0)011 0)8632 !0)064 !1)4204 !1)049 0)323 0)704
5)6 !2)0868 !0)014 0)6850 0)047 1)7708 0)005 !0)8849 0)043 !2)022 0)132
4)9 !2)1051 !0)004 !0)6351 !0)040 1)7948 0)007 0)8270 !0)056 !2)108 !0)072
4)2 !1)2842 0)003 !1)6036 !0)006 0)9032 0)013 1)4287 0)092 0)268 !1)040
3)5 !0)0177 0)813 !1)9110 !0)015 0)0108 !2)718 1)1578 !0)110 0)018 22)25
2)8 1)2545 !0)027 !1)6202 !0)011 !0)8765 !0)033 1)4233 0)026 !0)306 0)273
2)1 2)0933 !0)019 !0)6685 0)008 !1)7790 !0)034 0)8659 !0)097 2)052 !0)165
1)4 2)0993 !0)010 0)6518 !0)059 !1)7870 !0)001 !0)8466 !0)219 2)080 0)007
0)7 1)2693 !0)002 1)6119 !0)007 !0)8898 0)047 !1)4261 0)071 !0)287 !0)561
0 0 0 1)9110 0)000 0 0 !1)1577 0)000 0 0
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Figure 2. Comparison of results for the forced Du$ng equation of second order: e, y GDQR;==, y equation
(3); n, y@ GDQR; ***, y@ equation (3); *] , y@@ GDQR; * - -*, y@@ equation (3).

Figure 3. Comparison of results for the homogeneous Du$ng equation of second order: e, y GDQR; ==,
y equation (5); n, y@ GDQR; ***, y@ equation (5); *] , y@@ GDQR; * - -*, y@@ equation (5).

GENERALIZED DIFFERENTIAL QUADRATURE RULE 815
big relative errors in Tables 1}3 correspond to very small absolute values, while no evident
di!erence can be seen if the function is displayed graphically.

This work applies for the "rst time the GDQR to second and fourth order initial-value
non-linear di!erential equations. Procedures are given in detail to convert these non-linear
di!erential equations into a set of linear algebraic equations in an iterative loop using the
Frechet derivative. The wide applicability of the GDQR is manifested further through
examples.
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